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Generating RN: our proposed prediction framework first generates the initial

unlabeled example set IU and positive example set P depending on known

triples in the KGs. For every positive example (ℎ, 𝑟, 𝑡), we generate two types

of unlabeled examples (ℎ′, 𝑟, 𝑡) and (ℎ, 𝑟, 𝑡′) (unknown triples in the training

set) by random sampling under local closed world assumption. Every triple

will correspondingly generate 10 examples for both types, which make up the

initial unlabeled example set. The initial example set IU and P are then fed

into TSLRF. We use TSLRF in an iterative manner until the convergence of

the unlabeled example set or achieving the max iteration number. The output

of TSLRF is the reliable negative example set RN.

Loss Function of TSLRF:

where 𝛼 > 1 is used to control the importance ratio of positive and negative 

examples 𝛽 is the regularization parameter; 𝜎 denotes the logistic function; 

𝑁+ and 𝑁− denote the number of positive and negative examples respectively.

Introduction

Motivation: Knowledge graphs have proven to be incredibly useful for many

artificial intelligence applications. Although typical knowledge graphs may

contain a huge amount of facts, they are far from being complete, which

motivates an increasing research interest in learning statistical models for

knowledge graph completion. Learning such models relies on sampling

appropriate number of negative examples, as only the positive examples are

contained in the data set. However, this would introduce errors or heuristic

biases which restrict the sampler to visit other potentially reliable negative

examples for better prediction models.

Proposed Method: In this paper, we propose a two stage logistic regression

filter (TSLRF), i.e. a novel negative example generation approach based on the

positive-unlabeled learning framework. Specifically, it extracts a set of reliable

negative examples from the initial unlabeled data, which together with the

available positive examples, are then used to train a binary classifier. It

performs in an iterative manner and outputs the set of the low scoring negative

candidates for the downstream training. We further devise a novel embedding-

based model which works with cost-sensitive losses, by weighting the semantic

differences between negative examples and particular positive ones. This

weighting scheme reflects the importance of predicting the preferences

between them correctly.
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Conclusion

In this paper, we first propose a PU-learning framework to iteratively improve

the negative candidate pools for training triple prediction models. The

experimental results on FB15k and WN18 validate the effectiveness of

introduced negative selection scheme for both the latent feature models and

observed feature models. Then, we devise a semantic distance weighting

scheme to better the pairwise loss function, which could be widely used in

many triple prediction models. This weighting strategy effectively exploits

additional observed features to improve the latent feature model further.

Besides, experimental results also show that the combination of the two

proposed schemes brings about substantial improvements over state-of-the-art

methods.

Semantically Weighted Prediction Model

Semantically Weighted Loss Function:

where P denotes the positive example set, RN represents the reliable
negative example set, 𝛾 is the margin value, 𝑥 + = max{0, 𝑥} ; 𝑓𝑟 is the
score function, the weight function 𝜈(𝑠, 𝑠′) quantifies the semantic distance
between any two triples of our concern. We estimate the contributions of
different example pairs through a weight function:

where 𝛿 is a weight parameter chosen through cross validation, cos𝑧(𝑠1, 𝑠2)
denotes the cosine distance between 𝑠1 and 𝑠2 in the space of feature 𝑧. All
six types of features are divided into two sets: 𝑍1 denotes the feature set
comprising feature 3 and 4, 𝑍2 denotes the feature set comprising feature 1,
2, 5 and 6.

Latent and Observed Features of Triples

Latent Feature: In latent feature models, each triple is represented as a score
function or certain combination operator that depends only on learned
embedding vectors of the entities and relations, and possibly additional
global parameters.

Observed Feature: Observed feature models directly construct interpretable
features for each triple, which together with their weights, are used to define
the score of a triple.

In this work, we extract six types of observed features for every candidate
triple (𝑒𝑖 , 𝑟𝑘 , 𝑒𝑗). To be specific, we employ four types of observed features

(feature 1-4) introduced by Toutanova et al. and further define another two
types of new observed features (feature 5 and 6):

where 𝑒, 𝑟 denote any possible entity and relation, and 𝑟′ denotes the
relation that is different from 𝑟𝑘

Feature 5:

Feature 6:


